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Abstract—Heat transfer to an MHD fluid in the thermal entrance region of a flat duct has been investi-
gated. The flow is laminar and fully developed Hartmann flow, and heat flux at the wall is considered to
be constant. The developing temperature profiles as well as the local Nusselt number are presented graphic-
ally for the heat generation parameter of —1-0, —0-5, 0, 0-5 and 1-0; for the Hartmann number of 0, 4
and 10; and for the electric field factor of 0-5, 0-8 and 1-0. The results presented are applicable for the
cases with any Prandtl number. Comparisons are presented for certain cases with the previous work.

NOMENCLATURE

surface area of channel walls through
which heat is being transferred;

a, one-half of duct height;

A, By, Ci, Dy, constants defined by equation

(11);

A,

B,, magnetic field induction;

C,,  specific heat;

D,, equivalent diameter of the duct, 4a;

E, electric field strength;

e, = L, electric field magnitude factor ;
uoB,

H, magnetic field intensity;

H,, magnetic field imposed perpendicular

to bounding walls;

h, heat-transfer coefficient ;

J, electric current density;

k, thermal conductivity;

M, = pHya,/(o./p), Hartmann number;
Nu,, = "Te, local Nusselt number;

D, fluid pressure gradient in equation (1);
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C
Pr, = ﬂ—k", Prandtl number ;
q,.,  rate of heat transfer;
q’, = —Tq’ negative rate of heat transfer
per unit area;
Uod
Re,, = Puo , Reynolds number;
t, temperature;
te,  temperature of fluid at entrance of
channel;
u . . .
U, = dimensionless velocity ;
0
u, velocity in x-direction;
uy,  average fluid velocity;
v, fluid velocity vector;
kx x/a . .
X, = = = / , dimensionless
pa‘u,C, Re Pr
variable distance along length of duct;
X, variable distance along length of duct ;
Y, = y/a, dimensionless variable distance
across height of duct;
Vs variable distance across height of duct ;
z, variable distance along width of duct.
Greek symbols
2
Ugi
, o

= e heat-generation parameter ;
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P, density ;

i, viscosity ;

#,,  magnetic permeability;
o,  electric conductivity;

T, time;
t -1y ,. .
0, = —2 dimensionless temperature;;
aq'/k
—4
¥, = pseudo-local Nusselt number.,
Subscripts
b, bulk property or mean fluid property;
Js at jth position along x-axis;

k, at kth position along y-axis;
w, at walls or plates;
X, local property at position x.

INTRODUCTION

THE study of heat transfer in an electrically con-
ducting fluid flowing within a magnetic field has
become quite important. This is due to the de-
velopment of such devices as magnetohydro-
dynamic accelerators, generators, and similar
devices. A flat duct considered in this work has
applications in such devices.

The general literature on MHD heat transfer
before 1962 is well summarized by Romig [1}.
Siegel [2] investigated heat transfer to the region
where the temperature distribution is fully
developed and the heat flux at the wall is uniform.
Alpher [3], Yen [4], and Snyder [ 5] investigated
the same problem but they assumed that the
duct walls are electrically conducting. Regirer
[6] and Gershuni and Zkukhovitskii [ 7] studied
the problem but neglected the Joule heating in
the fluid.

The case considering constant wall tempera-
ture with viscous and electrical dissipation in the
thermal entrance region was investigated by
Nigam and Singh [8]. However, the Joule heat-
ing term in this investigation was incorrectly
represented [9], rendering their results invalid.
Erickson et al. [10] using a finite difference
analysis, presented the results for this case. Jain
and Srinivasan [11] extended this problem to

include the effects of electrically conducting
walls.

Michiyoshi and Matsumoto [ 12] studied both
the case of constant wall temperature and the case
of uniform heat flux at the wall, but neglected
the heat produced by viscous dissipation. They
considered only the open circuit case, that
corresponds to e = 1-0.

The problem investigated in this work is the
heat transfer to an MHD fluid for the case of
uniform heat flux at the wall in the thermal
entrance region. Neither viscous dissipation nor
Joule heating is neglected, and there can be a net
electric current flow parallel to the wall and
perpendicular to the flow direction. This same
problem was investigated previously by Perl-
mutter and Siegel [9]. They separated the prob-
lem into two parts: a problem which has a
specified uniform heat flux at the wall but no
internal heat generation in the fluid, and a
problem which has internal heat generation
within the fluid but no heat transfer at the channel
wall. By the superposition of these two separate
solutions, one can obtain the general solution
and the temperature distribution. The solution
for each part of the problem is presented in
graphical form for certain cases. It is, however,
rather tedious and difficult to carry out the
superposition and obtain a temperature distri-
bution at any position for any desired case.
Also the overall effects of various parameters on
the heat transfer are not obvious in this type of
presentation.

The purpose of this paper is to present the
results of the problem in an easily interpretable
manner so that the overall effects of the various
parameters can easily be demonstrated.

The developing temperature profiles and the
local Nusselt number for the heat-generation
parameter of —1-0, —0-5, 0, 05 and 1-0 are
presented for the Hartmann number of 0, 4 and
10. The results are compared with those obtained
by other investigators.

BASIC EQUATIONS
The geometry under consideration, illustrated
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in Fig. 1, consists of two semi-infinite parallel
plates extending in the x- and z-directions. The
electrically conducting fluid flows in the x-
direction, the magnetic field is imposed in the
y-direction, and the electric current flows in the
z-direction. We consider the steady, laminar,
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FiG. 1. Parallel plate channel with imposed uniform wall
heat flux and transverse magnetic field.

incompressible, and fully developed Hartmann
flow, and the physical properties of fluid are
independent of temperature and are constant.

The fully developed velocity profile was ori-
ginally obtained by Hartmann [13]. Cowling
[14] gave the Hartmann velocity profile for
zero net current in the following form:

M [cosh M — cosh M(y/a)] M

u= -
o ulH}E sinh M

where pis fluid pressure gradient ; M is Hartmann
number, equivalent to pHoa./(o./u); 4, is
magnetic permeability, o, is electric conductivity,
and H, is applied magnetic field. The average
value of u between y = +ais

e _ P
o.uzHG

[McoshM —1]. (2)

Then the dimensionless velocity profile used in
this work is
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5 cosh M — cosh M{y/a}‘J, 0)
0

W U= M{McoshM — sinh M
which is independent of the electric field.

The general form of the energy equation for
unidirectional steady flow of an incompressible
fluid with constant properties and with negligible

heat conduction in the fluid flow direction can be
simplified to

ox  pC,0y*  pC,\dy

The electric current intensity J can be expressed

by

Up

J2
pC,0,

)

3)

where e is the electric field magnitude factor.
With this value for J, the energy equation
becomes

y o k&t L wy
ox  pC, 0y~ pC,\dy
2 BZ 2
+“_°<’e_e(_e+.&). B
Introducing the dimensionless parameters

uTC", Prandtl number,

U= [coshM—coshMY]

Pr =

ty M cosh M — sinh M
X = zkx _ x/a ,

pa‘u,C, Re, Pr
Y =2,

a

t—t
0 = 2,

qlla/k

2
u .
n o= Efi,i—:, heat-generation parameter,

equation (6) then becomes

~ 2 2
o _ o9 + n(a—U) + M*p(e — UY.

Usx a7z T "3y

N
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The boundary conditions are

1. 8 =0 at X=0 and
0<Y <,
o6
2. — = : =
X 0 at Y =0 and )
0 <X,
oo
= t Y =
oy a 1 and
0 < X.

The third boundary condition can be developed

from the assumption of constant heat flux at the
wall [15].

SOLUTIONS OF THE ENERGY EQUATIONS

In order to solve the energy equation, the
velocity profile is first determined from equation
(3) and the energy equation is solved by employ-
ing a finite difference analysis. The finite dif-
ference equations are (see Fig. 2 for the mesh
network)

U - Uj,k’
6_9 _ 0601 — 0564
oY 2AY ’
a6 _ 016 — 05k
0X AX )
9_2_0_ _ 01,601 — 205016 + 0501 5-1)
av? 2AAY)

(Hj,k+1 ~ 20, + 0;4-1)

2AY)? ?

?E _ Wisiee1 = Ujsrx-1)
Y 2AY )

The boundary conditions in the finite difference
form become

1. 8p,=0 at

X=0 and 0<Y <,

2. iy =05410 at (10)
X>0 and Y=0,

30 Oj410+1 = 05410 + AY at
X >0 and Y=1
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F1G. 2. Mesh network for difference representations.

Substituting the difference equations, equation
(9), into the energy equation, equation (7), the
following equation, in which the 6 terms with
subscript j + 1 are the unknowns and the 0
terms with subscript j are the known variables,
is obtained.

[CilOjs 1. k41 + (40414
+ [Bk]6j+1.k—1 = [Dk], (11)

where
[C] = (B = -5
TV L8
U 1
A =Lk
(4] AX T (AY)?
1
[Dk] = “[Ck] 91,k+1 - W(’j,k
U, 1
~[Cd Oj4-1 + Athkgj,k + AAY)
X (Uj+1,k+1 - Uj+1.k—1)2

+ M?*nle — U; >

Substituting k = 1, 2, ..., n into equation (11)
with the boundary conditions given by equation
(10), n unknowns and n simultaneous equations
are obtained. These equations are solved by the
Thomas method [16]. It is important to achieve
convergence to the true solution of the differen-
tial equations within the available computer
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U(AY)? s
12(AX)
kept less than 0-05, the truncation errors are
reduced from 0(AX) and O(AY?) to O(AX?) and
0(AY*) [10, 17]. Although the velocity, U, is in
the range, 0 < U < 'S, it is taken as 10 in
U(AY)?

. Th h
n@ax) e
sizes employed are shown in Table 1.

storage capacity. When the value of

calculating the values of

Table 1. Mesh sizes for finite difference solution of the energy

equation
X AX AY N uary
12(AX)
0
] 00005 000625 160 0-0065
0001
] 000t 002 80 0013
001
] 0005 00125 80 00026
o1 ] 001 00125 80 00013
25

HEAT TRANSFER PARAMETERS

The bulk temperature (or mixing mean tem-

perature) is evaluated after the temperature

profile has been determined by the following

finite difference equation at X = (j + 1)AX

Qb,x = RZI 9j+ I,kUj-I— LAY, (12)

The wall temperature is approximated in
finite difference form as [15]

Gw,x = 9j+1,n+1
=49j+1,n = 0j41,0-1 + 247

3

(13)

The mean Nusselt number, Nu,, for constant
heat flux at the wall is of secondary importance,
and the local Nusselt number, Nu,, is desired.
The local Nusselt number may be used to evalu-
ate the wall temperature at any position along
the duct whereas the primary usefulness of the
mean Nusselt number is in evaluating the tem-
perature of fluid leaving the heat exchanger.
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The local Nusselt number is defined as

_ hD,
=

For the case of constant heat flux at the wall,
the local Nusselt number reduces to [15, 17]
—4
Nuy = —-
"= A0
where A is the difference of the wall temperature
and the bulk temperature defined as

(Ae)x = Hw,x - Gb X-

»

Nu, (14)

(15)

RESULTS AND DISCUSSION

The results for the following parameters are
presented: the Hartmann number of §, 4 and 10;
the electric field factor of 0-5, 0-8 and 1-0; and
the heat-generation parameter of —1-0, —05, 0,
(-5 and 1-0. The results presented are applicable
to any Prandtl number.

The electric field factor, e, is equivalent to the
efficiency of an MHD generator and may be
defined as the ratio of the electric power de-
veloped to the power necessary to produce the
flow of the fluid. The value of ¢ for the maximum
power generation is 0-5. The generally accepted
value of ¢, for the compromise which must be
made between the conflicting requirement for
the maximum power and for the maximum
efficiency in MHD generators, is 0-8 [18]. An
open circuit, or no net electrical current flow in
the channel, occurs when the electrical field
factor is 1-0.

The heat-generation parameter, #, is similar to
the Brinkman number which is a criterion for the
negligibility of viscous dissipation. When # is
positive, heat is transferred into the system
through the walls. If  is negative, heat is trans--
ferred from the fluid through the walls to the
surroundings [15].

The dimensionless temperature distributions
between the parallel plates at various positions
in the thermal entrance region are presented in
Figs. 3(a—) and 4. In Figs. 5(a—) and 6 the
variations of dimensionless wall temperature,
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F16. 3(a). Development of temperature profiles in the thermal entrance region M = 4,¢ = 0-5.
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FIG. 3(b). Development of temperature profiles in the thermal entrance region M = 4,
e = 08
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F1G. 5{a). Variation of wall and bulk temperatures, M = 4, ¢ = (5.
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F1G. 5(b). Variation of wall and bulk temperatures, M = 4,¢ = 08.
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F1G. 5(c). Variations of wall and bulk temperatures, M = 4,¢ = 1-0.
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F1G. 6. Variations of wall and bulk temperatures, M = 10, e = 0-8.
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8., and bulk temperature, 8,, with dimensionless
distance along the flow direction are presented.
The pseudo-local Nusselt number, , defined
as
4

'/J gw,X - Ob, X,
is plotted in Figs. 7(a—) and 8. The quantity y
is identical to the local Nusselt number except
that it changes sign depending upon the relative
magnitudes of 8, x and 6, y; thus, the use of ¥
reveals the behavior of the system better than
the use of Nu,. Additional numerical results are
given in reference [19].

The shape of the dimensionless temperature
distribution for positive values of the heat-
generation parameter, n, presented in Figs.
3(a—) and 4 is similar to those presented by
Brinkman [20] for flow in a capillary with insu-
lated walls (g = 0), a special case of constant
heat flux at the wall. The shape of these curves,
as well as those when # is less than zero, is also
similar to those obtained by Novotny and Eckert
[21] for free convection flow between parallel

plates with uniform heat sources in the fluid.
Neither of the above two references considered
flow in an MHD channel.

The dimensionless temperature is uniform
and equal to zero at the channel entry (X = 0).
The temperature increases as the flow distance
increases, because of heat generation by viscous
dissipation and Joule heating. Since y is greater
than zero when heat is added to the fluid through
the wall, the combined effect of both external
and internal heating is to increase the tem-
perature of the fluid. When # is less than zero
heat is transferred away from the fluid through
the wall. Hence there is a competitive action
between the internal heat generation and the
external loss of heat. In this case, the dimension-
less temperature increasing negatively is equiva-
lent to the dimensional temperature increasing
positively due to the definitions of the dimen-
sionless temperature, 8, and the heat-generation
parameter, n [15].

An increase in the electric field factor isequiva-
lent to a decrease of electric current flow through

300r

200

¥ o0}

~100¢

~-150

7n=-075

4 1074 4

®

1073 4

FiG. 7(a). Pseudo-local Nusselt numbers, M = 4,¢ = 0-5.



HEAT TRANSFER TO MHD FLOW 783

LI e T T - T

n=-05

-100

-200t

4 oe BT BT
I3
Fi1G. 7(b}). Pseudo-local Nusselt numbers, M = 4,¢ = 0-8.
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F1G. 7(c). Pseudo-local Nusselt numbers, M = 4, ¢ = [-0.
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Fic. 8. Pseudo-local Nusselt numbers, M = [-0,¢ = 08

the field, and is also proportional to a decrease
of Joule heating in the fluid. Comparison among
Figs. 3(a), (b) and (¢} for a Hartmann number of 4
shows that the rate of temperature increase is
reduced by increasing e. The same trend is ob-
served for other values of Hartmann number
[19] However, the difference between the
centerline temperature and the wall temperature
increases as e increases. This phenomenon is
due to the increasing significance of the viscous
dissipation, which is higher near the walls, as
the Joule heating effect becomes smaller.

Effects of the electric field factor, e, can also be
observed when a comparison is made among
Figs. 5(a), (b} and (c) for Hartmann number of
4. Again, the reduction of wall and bulk tem-
perature with increasing e can be observed,
since there is a reduction in the Joule heating.
The same trend can be observed for other values
of Hartmann number [19]. Because of an in-
crease in the difference between wall and bulk
temperature accompanying an increase in e,
there should be a decrease in the local Nusselt
number, or the absolute value of the pseudo
local Nusselt number, ¥, should decrease as e
increases. This is shown in Figs. 7(a), (b) and

{c) for Hartmann number of 4. Again the same
trend can be observed for other values of Hart-
mann number [19].

Effects of changing the Hartmann number can
readily be seen by comparing Fig. 3(b) with
Fig. 4. An increase in the Hartmann number
significantly increases the temperature. Similar
effects can also be observed by comparing Fig.
5(b) with Fig, 6.

Effects of the heat-generation parameter, n, can
be studied by examining Figs. 5(a—) and 6.
Increasing the heat-generation parameter when
it is greater than zero causes an increase in the
difference between the wall and bulk tempera-
ture, which in turn results in a decrease in the
pseudo local Nusselt number as shown in Figs.
7(a—c} and 8. A similar trend can be seen when 5
is negative.

Referring to Fig. 5(a) for the case of n = —0-5,
the wall temperature, 8,, becomes more nega-
tive than the bulk temperature, 6,, at the posi-
tion X/16 = 98 x 1072 Before this point is
reached from the inlet of the duct, the tempera-
ture difference, Afy = 0,, x — 0, x, approaches
zero positively. Thus, the pseudo-local Nusselt
number, ¥, should approach infinity positively.
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Then at the position where the wall temperature
becomes more negative than the bulk tempera-
ture, the sign of Y is reversed and becomes
negative (see Fig. 7a). A similar trend can be
observed for the case in which M = 4, e = 08,
n = —0'5in Figs. 5(b) and 7(b).

Figure 9 presents a comparison of the pseudo-
local Nusselt number, , for various values of the
Hartmann number, M. The dimensionless bulk
temperature increases more rapidly than the
dimensionless wall temperature as the Hartmann
number increases. Therefore, for the cases in
which y > 0, 0,, x > 0, x, the temperature dif-
ference between the wall and bulk temperature,
0, x — 0, x will decrease, and the pseudo-local
Nusselt number, ¥, will increase [see equation
(15)] as the Hartmann number increases. For
the cases in which s < Oand 8, x < 0, «, an
increase in M means an increase of 0, x — 0,, x
as well as a decrease of the magnitude of the
pseudo-local Nusselt number, .

Figure 10 shows the variation of temperature
with position along the duct. The distance from
the centerline is the parameter. Only one case is
presented to exemplify the trend which occurs in
all cases.

Figures 11(a) and (b) show the comparison of
the present work with that of Michiyoshi and

Matsumoto [12]. These authors assumed the
viscous dissipation term to be negligible, and
thus for the case of # = 0, for both Hartmann
numbers of 4 and 8, the results reported by
Michiyoshi and Matsumoto and those evaluated
in this work should be identical. The reason that
the former set of results is lower than those of the
present work for small X will be explained later.
For the cases in which # = 0, the results of
Michiyoshi and Matsumoto differ greatly from
those reported in this work. This difference is not
surprising because the viscous dissipation was
assumed to be negligible in the former presenta-
tion. As the Hartmann number increases the
viscous term becomes less crucial and Michiyoshi
and Matsumoto’s results approach those re-
ported in this work as shown in Fig. 11(b). A
comparison of the results given in these figures
offers an excellent opportunity to observe the
effects of viscous dissipation. The comparison
of results is made for the open circuit case (e =
1-0) because this was the only case investigated
by Michiyoshi and Matsumoto.

As stated in the introductory remarks, Perl-
mutter and Siegel [9] studied the same problem
investigated in this work, and reported the
results in the form of equations containing
infinite series and, for certain special cases,

100 . S —
N 7=t0

—-—M=4 , -08 1
—————— M=10, 6:08

o2

F1G. 9. Comparison of pseudo-local Nusselt numbers for various Hartmann numbers
andn = 0, —1-0.
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iG> T BT ‘ 0
X
F1G. 10. Variation of temperature with positim’n1 z(x)long the duct, M = 10,e = 0-8, and y = 10,
ao} \\\‘\,
0l e 7=-075

& o} LERILY
o I
q);— -0
" 20 77 :-0-5 ;
30 ---- Michiyoshi ond Matsumoto [12]
Present work
-a0t
_50 A A a FUEN PR 1 Akl & 4 L 1
110 x0T 10
X
FiG. 11{a). Comparison of Nusselt number forthecase M = 4, ¢ = -0
graphlcal.solutlons are presented. Table 2 shows Tuble 2. Local Nusselt number at X — %
a comparison of the local Nusselt number for the
case in which X approaches infinity and no in-  Hartmann number Local Nusselt number
ternal heat ger}eratlon in tl}e fluid, tha? is for the Perlmutter and Prosent work
case of n = 0, is presented for values of the Hart- Siegel [9]
mann number of 4 and 10. Figure 12 compares
4 91013 90530
the local Nusselt number calculated from Perl 10 10-2585 102016

mutter and Siegel’s results with the results of
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Present. Work
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=102

1x10" 0

X

F1G. 11{b). Comparison of pseudo-local Nusselt number for the case M = 8, ¢ = 10.

50 v

40r

30

Present Work

YT T

[

T3

5 .-

Perimutter and Siege! (9}

g2

G No)

X

Fic. 12. Comparison of local Nusselt number for thecase M = 10, ¢ = 10,5 = —0-09.

this work throughout the thermal entrance
region for the case y = 0:09,¢ = 1-0,and M =
10-0. The present work is in fair agreement with
the results of Perlmutter and Siegel if X is greater
than 0-3. The deviation when X is less than 0-3
perhaps is due to the error incurred when the
infinite series found in Perlmutter and Siegel’s

solution is truncated in numerical computation.
These authors reported eigenvalues for only
seven terms in the infinite series; therefore, the
series were probably truncated after the seventh
term. A similar trend was encountered in the case
of Poiseuille flow (M = 0, and n = 0). It was
shown [15] that the results obtained by a series
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solution with 20 terms of eigenvalues closely
agree with those obtained by the finite differ-
ence method applied in the present work, while
the results obtained by the series solution with
10 terms of eigenvalues are much lower in the
region of small X. The methods used in reference
[9] and that in reference [12] are essentially the
same. Therefore, the explanation as given above
can be used to account for the discrepancy
between the present results and those given in
reference [9].

CONCLUSION

Forced convection heat transfer to an MHD
fluid in the thermal entrance region of a flat
duct is investigated in the present work. Both
Joule heating and viscous dissipation are not
neglected. Effects of neglecting the viscous dissi-
pation are evaluated. Influences of the Hartmann
number, heat-generation parameter, and electric
field factor on the development of temperature
profile and local Nusselt number are discussed.

Results are compared with those of the pre-
vious work available for some cases. It appears
that the present results obtained by means of a
finite difference analysis are more accurate than
the previous results obtained by analytical
methods.
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Résumé—Le transport de chaleur & un fluide conducteur dans la région d’entrée thermique d’une conduite
bidimensionnelle a été étudié. L’écoulement est un écoulement laminaire de Hartmann entiérement établi,
et ’on suppose que le flux de chaleur est constant. Les profils de température en régime établi ainsi que le
nombre de Nusselt local sont présentés graphiquement pour des valeurs du paramétre de production de
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chaleur égalesa —1, —0,5,0, 0,5 et 1; pour des nombres de Hartmann de 0, 4 et 10, et pour des parameétres
de champ électrique de 0,5, 0,8 et 1. Les résultats présentés s’appliquent dans le cas d’'un nombre de Prandtl
quelconque. Certains cas sont comparés avec le travail actuel.

Zusammenfassung—Der Wirmeiibergang an ein MHD-Medium in der thermischen Einlaufstrecke eines

ebenen Kanals wurde untersucht. Es war eine laminare und voll ausgebildete Hartmannstrémung vor-

handen und der Warmestrom an der Wand wird als konstant angesehen. Die sich ergebenden Temperatur-

profile wie auch die 6rtliche Nusseltzahl sind graphisch wiedergegeben fiir einen Wérmeerzeugungspara-

meter von — 1,0, —0,5, 0, 0,5 und 1,0; fiir die Hartmannzahl von 0, 4 und 10 und fiir den Faktor des elek-

trischen Feldes von 0,5, 0,8 und 1,0. Die Ergebnisse sind fiir Félle beliebiger Prandtlzahl anwendbar. Fiir
einige Fille sind Vergleiche mit der vorangegangenen Arbeit durchgefiihrt.

Arnorampa—Hccnenosainca rennoo6men MI'/] moToka B0 BXOAHOM yuacTHe IIOCKON TPYGH.
TeueHue ABAAGTCA JTAMMHADHHM H IOJHOCTHIO PA3BUTHIM (OTOK XapTMAaHHA) M TeIIOBOMH
HOTOK HA CTEHKE CYMTAeTCA NOCTOAHHHM. PasBuBalouinecA TemIepaTypHHe NpoduiM, a
TaKKe JOKalbHoe Yncao HyccensTa npeacraBienH rpadudecky A napamerpa o0pasoBanus
remna —1,0; —0,5; 0; 0,5 u 1,0; pas yncna Xaprmauna 0,4 u 10 ¥ A1A HANPAKEHHOCTH
anexTpudeckoro noiasa 0,5; 0,8 u 1,0. HpenacraBieHHEe Peay bTATH MOKHO INPHMEHHTH K
cayyaaM ¢ oGum 4uciaom Ilpanpraa. [IpoBefeHo cpaBHeHHe ¢ peaynpTaTaMM HpeALAyIei
paboTH.
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